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Abstract--This paper presents an implementation of power
system stabilizer using inverse dynamic neuro controller.
Traditionally, mutilayer neural network is used for a universal
approximator and applied to a system as a neuro-controller. In
this case, at least two neural networks are required and
continuous tuning of neuro-controller is required. Moreover,
training of neural network is required considering all possible
disturbances, which is impractical in real situation.

In this paper, Inverse Dynamic Neuro Model (IDNM) is
introduced to avoid this problem. Inverse Dynamic Neuro
Controller consists of IDNM and Error Reduction neuro Model
(ERNM). Once the IDNM is trained, it does not require
retuning for cases with other types of disturbances. The
controller is tested for one machine and infinite-bus power
system for various operating conditions.

Index Terms—Free model, Power system stabilization, Inverse
dynamics, Neuro controller.

I. INTRODUCTION

Power plants interconnected to a power system are
complex, fast acting multivariable systems with high
nonlinearity and a wide range of time constants in different
control loops. Interconnected to a power system, power plants
operate over a wide range of operating conditions, from
lagging to leading phase, and are subjected to different types
of disturbances, such as changes in terminal voltage and
transformer tap positions, adjustment of operating conditions
by changing inputs to governor and excitation systems, and
short circuits on transmission lines. The characteristics of
power plants vary as conditions change, but the outputs have
to satisfy the requirements in power system operation. The
ultimate goal of the power plant control is a stable operation
of the power system in spite of a wide of range of the plant
operation.

Considerable efforts have been made to synthesize Power
System Stabilizers (PSS) for power systems, most of which
are based on the deMelio and Concordia’s pioneering work
[1,2]. In their work, a linearized model is used to find a
proper set of parameters in a fixed structured PSS. Linear
optimal control and modern control theories were also
introduced to improve the dynamic performance of power
systems under the uncertainty in power system models
[3,4,5]. These techniques, however, depend on the model
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accuracy, which is less reliable as the power system becomes
larger. .

Adaptive techniques have been also employed in the PSS
design for wide range operations [5-13). In real applications,
however, they have a shortcoming of immense calculation in
every sampling period.

Recently, Artificial Neural Networks (ANN) have attracted
attention of power system engineers. There have been a great
deal of researches reported on ANN and their application to
control systems [14,16]. Inverse Dynamic Neural Network
(IDNN) was introduced in [14], which requires Error
Reduction Network consisting of three IDNNs, and [15]
requires the training of the neural network considering all
possible conditions. Poggio and Girossi have revealed that
the learning of an ANN is equivalent to synthesizing an
associative memory between input space and output space
[17]. It was also regarded as an equivalent problem to the
estimation of an input-output transformation using a given
input-output data set. Nguyen and Widrow show that the
neural network can be applied to control a highly nonlinear
system [18]. Iiguni and Sakai used an ANN as an auxiliary
controller for conventional LQ controller to compensate for
the nonlinearities existing in the control system [19]. There
has been a great deal of literature in which the learning ability
of ANNs was exploited and applied to the PSS problems. Hsu
and Chen [20] proposed a real time self-tuning approach,
where they used ANN to tune the parameters of conventional
proportional-integral type PSS. However, since their
approach requires a mathematical model of the controlled
system for a wide range of operating conditions, it bears a
shortcoming in large scale system application. Wu, Hogg and
Irwin [21] presented a hierarchically structured neuro-PSS
whose approach is similar to that of Nguyen and Widrow
[18]. The neuro-PSS consists of two subnets; one for input-
output mapping, and the other for control. Kennedy and
Quintana [22] suggested an inverse controller using ANN. In
their work, an inverse dynamic relationship is represented in
the state space and is trained by an ANN that is used as an
inverse controller.

The input to neuro controller is a full state vector of the
controlled plant, which is somewhat impractical in real world.
Zhang and coworkers suggested a PSS using an inverse
input-output mapped ANN [15]. In their paper, inverse
control is well explained, but it requires a protection scheme
for large control input when the plant is of non-minimum
phase.
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Most of the neuro controllers, with few exceptions, have a
common feature, that is, using two ANNSs; one for system
identification and the other for controller. The ANN identifier
is trained first with input-output data to emulate the
controlled system. After training of the identifier, it is used as
an error propagation tunnel in the ANN controller training.
The training of the controller is performed by minimizing a
cost function. This burden of training two neural networks is
a drawback of conventional neuro-control approaches. After
the completion of neuro-controller training, it is difficult to
change the control performance because it requires additional
training of the neuro-controller. In general, the training of a
controller is more difficult then that of an identifier. This is
another drawback.

In this paper, an inverse input-output relationship of the
controlled system is identified by an Inverse Dynamic Neuro
Model (IDNM) based on the free model concept [23,24]). The
training procedure of the IDNM uses the Levenberg-
Marquardt method [25), where the desired output of IDNM is
not the system output but the control input. After training, the
IDNM is used as an inverse controller, and additional training
of the controller is not needed. Instead, the Error Reduction
Neuro Model (ERNM) is introduced to minimize the
modeling error of the IDNM.

II. INVERSE DYNAMIC NEURO CONTROLLER

A. Inverse Dynamic Neuro Mode!

In this work, the free-model concept [23,24] is applied to
find an Inverse Dynamic Neuro Model (IDNM) using input-
output data only. After the IDNM is obtained, it replaces an
existing controller. In the free model, the data used has
incremental forms using backward difference operators. Such
data forms are from the concept of the free model, in that an
unknown system can be identified if the differences, such as
position, velocity and acceleration, are known.

The inverse dynamic neuro controller is developed as an
alternative controller for the existing controller, which is the
Power System Stabilizer. The controller employs IDNM and
Error Reduction Neuro Model (ERNM); IDNM as a
feedforward controller which increases the performance of
the system and improves the tracking error, and ERNM as a
feedback controller which takes care of the stability.

In general, the output of a system can be described with a
function or a mapping of the plant input-output history. For a
single-input single-output (SISO) discrete-time system, the
mapping can be written in the form of a nonlinear function as
follows:
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yk+1) = f(y(k), y(k -1),..., y(k ~n),

u(k),u(k =1),...,u(k —m)) M

Using the free-model concept, this can be equivalently

represented as following:

vk +1) = f(p(k), Ap(k),..., A" y(k), u(k),
u(k = 1), Auk —1),..., A™u(k - 1)),

()

where .A’. is the backward difference operator defined as

N fky= A f R -AT k-1, A%F(R) = fR). (3)
Solving for the control, (2) can be represented as following:

u(k) = g(y(k +1), y(k), Ay(k), A% p(k), .., A" y(),
ulk 1), Aulk = 1), A2u(k ~1),..., A™u(k - 1)),

which is a nonlinear inverse mapping of (2).

The objective of the control problem is to find a control
sequence which will drive the system to an arbitrary
reference trajectory. This can be achieved by replacing
y(k+1) in (4) with y, (k +1), the reference trajectory.

In general, the IDNM can be represented by a neural
network. In Fig. 1, the training mode is introduced, where A
denotes the vector of difference operators defined in (3). In
this process, the closed-loop identification is required since
the plant may not be stable initially. Pseudo-Random Binary
Signal (PRBS) is applied for the closed-loop system
identification [26] to collect input-output data used in training
mode. In Fig. 2, it is shown how the IDNM is applied as a

controller in the system, where a supplementary signal E(k)
is applied in order to compensate for modeling error.

u(k) y(k+1)
PLANT |
A
(k) IDNM
——————

Fig. 1. Training mode of IDNM.
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IDNM + PLANT
4, (k) u(k) Wk +1)
E(k)
Fig. 2. Control mode of IDNM.
E(k) u(k-1)

Fig. 3. The Error Reduction Neuro Model.

B. Error Reduction Neuro Model

For better accuracy, it is required to consider a wide range
of operating conditions and disturbances in designing the
controller. In real application, however, it is impractical to
consider all operating conditions and disturbances. Therefore,
when the system is operating under conditions and
disturbances that the IDNM has never learned, error between
the IDNM and real inverse dynamics inevitably exists even
though the IDNM learning may have been completed for
previously given data set.

Suppose the IDNM is trained for one operating condition
and then it is to be used for some other operating condition
without retuning its parameters. In Fig. 2, the output of

IDNM 1, (k) is no longer the same as #(k) in Fig. 1. In
other words, the output of IDNM, i, (k), in Fig. 2 will not be
the same as the desired u(k) for a different operating

condition since y, (k+1) is not the same as y(k+1) used in

the training mode of IDNM. Therefore, there exists a
modeling error E(k) at time k. The system input

considering the modeling error becomes as following:

u(k) =i, (k) + E(k), 5)

where E(k) is the estimate of the modeling error E(k).
The error can be estimated by extrapolating the previous

r

+1

1
E(y=3 (-1 [1 )A’E(k -1, (6)
r=1

where
E(k-1)=u(k-1)-duk-1),
AE(k-1)=E(k-1)-E(k-2).

Here, E(k-1) is the modeling error at time k—1, A" is the

backward difference operator defined in (3), / is the
extrapolation order, and the binomial-coefficient notation is
defined as

s) s(s—-D---(s—k+1)
k k! '

Fig. 3 shows the design of the Error Reduction Neuro Model
(ERNM) using the IDNM, and NBDF.

In Fig. 2, IDNM is fixed after training and it acts like a
feedforward controller. The compensation of the modeling
error and disturbances are taken care of by the ERNM, which
acts like a feedback controller.

ITII. SIMULATION TEST

The proposed Inverse Dynamic Neuro Controller is tested
in a one-machine and infinite-bus power system (Appendix).

In the training of IDNM, Fig. 4 shows the architecture of
IDNM, where activation function f; is the fanh and Fy is 1.

Since the main purpose in the designing of controller is to
control a system in simple way, the five inputs are used in the
training of IDNM such as

{yr (k + 1)’ )’(k),AJ’(k),“(k —1)7 Au(k - l)} .

error using the Newton-backward-difference formula
(NBDF) [27] as follows: Fig. 4. The architccture of [IDNM.
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Fig. 5 shows the collected input-output data which are used
to train an IDNM in training mode. Fig. 6 shows the
validation of Inverse Dynamic Neuro Model after it is trained
by Levenberg-Marquardt method. The system input or
controller output is validated in Fig. 6. The sampling time of
0.01 sec. is used to train an IDNM.

x 10~ System output

angular speed (w-wref)

cpss

time(sec)

Fig. 5. The system input and output data in closed-loop.
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Fig. 6. The validation between estimation data and validation data.

The input-output data set used to train IDNM is

{y, (k+1), y(k), Ay(k),u(k —1), Au(k—1)} and the fitness can
be calculated as following:

1—norm(y - p)

fit =100x )

norm(y — mean(y)) ’

where yis the real data or validation data and p is the
estimated data in validation mode. The fitness is 59.6532%.
The trained IDNM is not trained again for other disturbances.
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Case 1: A Single Disturbance

Generator model and operating points are given in
Appendix. The torque angle deviation & is applied as a
disturbance. The initial torque angle & is increased by 0.7
[p.u.]. In Fig. 7, the IDNC is compared with a conventional
PSS (CPSS) and IDNM in control mode without ERNM.
Moreover, In Fig. 8, the control inputs #, (k), E(k), and

u(k)in (5) are shown.

3
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Fig. 7. The comparison among the CPSS, IDNM, and IDNC.
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" Fig. 8. The control inputs of &, (k), E(k) , and u(k) .
It is shown that the IDNC performs better than the CPSS,
although it was not trained with the new disturbance.
Case 2: Multiple Disturbance
In this case, there are two disturbances: one is the torque

angle deviation § which is increased by 0.5 [p.u.] from
initial operating point, 1.2876, from 0 sec. to 7 sec. After that,
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the initial torque 7,,, 1.1, is decreased by 20%. Fig. 9 shows
the comparison of the output among IDNC, IDNM without
ERNM, and CPSS. The IDNM is the same in the used in the
previous casel, and the sampling time is 0.01 sec. It is also
shown that the IDNC performance is much better than the
CPSS even if the operating conditions of &and 7, are
changed.

angular speed (p.u.)

time(sec)

Fig. 9. The comparison among CPSS, IDNM, and IDNC.

Case 3: Network Disturbance

In this case, a three-phase fault is created in near infinite
bus. The simulation is as following:

Fault occurred at 0 sec., lasted for 0.05 sec., faulted lines are
removed until 0.25 sec., and then reclosed.

The effect of a line removal is simulated by changing the
line impedance Z to Zx2. Figs. 8 shows the comparison of
the system output among IDNC, IDNM, and CPSS. The
same IDNM found in Case 1 is used and the sampling time is
0.01 sec. In the network disturbance, the IDNC also performs
much better than the CPSS even if it was not trained with this
type of disturbance.
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Fig. 10. The comparison among CPSS, IDNM, and IDNC.
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IV. CONCLUSION

In this paper, the inverse dynamic neuro controller (IDNC)
is presented. The inverse dynamic neuro model (IDNM) is
derived using the free-model concept. The input-output data
set are collected in closed-loop since the system is unstable
initially. Pseudo-Random Binary Signal is applied in the
closed-loop system.

There are some advantages of using the proposed IDNM.
One is that a trained artificial neural network is used for
IDNM, and it is not required to retrain it for other
disturbances. The other is that it has Error Reduction Neuro
Model (ERNM) to reduce the modeling error for various
operating conditions. Once the IDNM is trained in a training
mode, it is applied in control mode without requiring
retraining, while, in other inverse dynamic neural network
(IDNN) approaches, well trained IDNNs are required. In
other words, it is required to retrain neural networks when
other disturbances are introduced in the system.

The IDNC was implemented in a one-machine infinite-bus
power system. It was tested in various operating conditions
and compared with the conventional PSS. In all cases, the
IDNC out-performed the conventional PSS and thus
demonstrated the usefulness of IDNM based controller
design.

V. APPENDIX

One-Machine Infinite-Bus (OMIB) Power System [28]

h
Z=-0.034+ j0.077 é
l Y =0.249+ j0.262 ?

Fig. A.1. One-machine infinite-bus model.
Machine Models (generator, turbine, governor and exciter):
ds;
2L (@~
dt b( i a)())

do
Mi%-‘-(TMi—Pei“Di(a’i —ayp))

. dEy, . .

Tdoi_;’q‘—=(E/di_Eqi—(Xdi"Xdi)Id;)
dE rzi

Ty—L% = (K Ve =Y+ Cpu) = Epa)

dT,
T —“d:'ﬁ = (FupiUgi = Tagi + Tagri)

dU,;
TgiT = (Kgi(wmﬁ -a;)-Ug)
- X, 1+sT o she |
Wt Aw 1+sT, 1+sT,,
Cpss
]

Fig. A.2. Conventional power system stabilizer model.
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Table A.1. The Parameters of PSS Table A.2. Exciter Data

Kee
7.091

HENE
0.685 | 0.1

T, (sec) K, (pw)
0.05 25

Table A.3. Generator, Turbine, and Governor data ( elq Model)

M T;o Xgq X, x;i T, Fp K, T,

9.26 7.76 ) 0973 | 055 | 0.19 } 0.1 1 10 0.1

Table A.4. Operating points

5 Efd T Eq Vg Vq

m
1.4219 1.1 1.0197 | 0.5022 { 0.9221

V.

int

1.05 | 1.2876
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